Question
      
        The potential at a point $$x$$ (measured in $$\mu m$$ ) due to some charges situated on the $$x$$-axis is given by $$V\left( x \right) = \frac{{20}}{{\left( {{x^2} - 4} \right)}}volt.$$     The electric field $$E$$ at $$x = 4\,\mu m$$   is given by      
       A.
        $$\left( {\frac{{10}}{9}} \right)volt/\mu m$$    in the $$+ve$$  $$x$$ direction                 
              
       B.
        $$\left( {\frac{{5}}{3}} \right)volt/\mu m$$    in the $$-ve$$  $$x$$ direction              
       C.
        $$\left( {\frac{{5}}{3}} \right)volt/\mu m$$    in the $$+ve$$  $$x$$ direction              
       D.
        $$\left( {\frac{{10}}{9}} \right)volt/\mu m$$    in the $$-ve$$  $$x$$ direction              
            
                Answer :  
        $$\left( {\frac{{10}}{9}} \right)volt/\mu m$$    in the $$+ve$$  $$x$$ direction      
             Solution :
        Here, $$V\left( x \right) = \frac{{20}}{{{x^2} - 4}}volt$$
We know that $$E =  - \frac{{dV}}{{dx}} =  - \frac{d}{{dx}}\left( {\frac{{20}}{{{x^2} - 4}}} \right)$$
$$\eqalign{
  & {\text{or,}}\,\,E =  + \frac{{40x}}{{{{\left( {{x^2} - 4} \right)}^2}}}  \cr 
  & {\text{At}}\,\,x = 4\,\mu m,  \cr 
  & E =  + \frac{{40 \times 4}}{{{{\left( {{4^2} - 4} \right)}^2}}} =  + \frac{{160}}{{144}} =  + \frac{{10}}{9}\,volt/\mu m. \cr} $$
Positive sign indicates that $${\vec E}$$ is in $$+ve$$  $$x$$-direction.