Question
The electric field strength in air at $$NTP$$ is $$3 \times {10^6}\,V/m.$$ The maximum charge that can be given to a spherical conductor of radius $$3\,m$$ is
A.
$$3 \times {10^4}C$$
B.
$$3 \times {10^{ - 3}}C$$
C.
$$3 \times {10^{ - 2}}C$$
D.
$$3 \times {10^{ - 1}}C$$
Answer :
$$3 \times {10^{ - 3}}C$$
Solution :
Given, $${E_{\max }} = 3 \times {10^6}\,V/m$$ and $$R = 3\,m$$
We know that,
$$\eqalign{
& E = \frac{1}{{4\pi {\varepsilon _0}}} \times \frac{Q}{{{R^2}}} \cr
& \Rightarrow {Q_{\max }} = 4\pi {\varepsilon _0}{R^2}{E_{\max }} \cr
& = \frac{{3 \times 3 \times 3 \times {{10}^6}}}{{9 \times {{10}^9}}} \cr
& = 3 \times {10^{ - 3}}C \cr} $$