Question

The area of the region $$\left\{ {x,\,y\,:\,xy \leqslant 8,\,1 \leqslant y \leqslant {x^2}} \right\}$$      is-

A. $$8\,{\log _e}2 - \frac{{14}}{3}$$
B. $$16\,{\log _e}2 - \frac{{14}}{3}$$  
C. $$8\,{\log _e}2 - \frac{7}{3}$$
D. $$16\,{\log _e}2 - 6$$
Answer :   $$16\,{\log _e}2 - \frac{{14}}{3}$$
Solution :
$$xy \leqslant 8,\,\,1 \leqslant y \leqslant {x^2}$$
Intersection points of $$xy= 8$$   and $$y= 1$$   is $$\left( {8,\,1} \right);xy = 8$$    and $$y = {x^2}$$   is $$\left( {2,\,4} \right)$$  and $$y = {x^2}$$   and $$y =1$$   is $$\left( {1,\,1} \right)$$
Application of Integration mcq solution image
$$\eqalign{ & {\text{Required area}}\, = \int\limits_1^2 {{x^2}dx} + \int\limits_2^8 {\frac{8}{x}dx} - \int\limits_1^8 {1\,dx} \cr & = \left( {\frac{{{x^3}}}{3}} \right)_1^2 + \left( {8\ln \,x} \right)_2^8 - \left( x \right)_1^8 \cr & = \frac{8}{3} - \frac{1}{3} + 8\,\ln \,8 - 8\,\ln \,2 - \left( {8 - 1} \right) \cr & = \frac{7}{3} + 24\,\ln \,2 - 8\,\ln \,2 - 7 \cr & = 16\,\ln \,2 - \frac{{14}}{3} \cr & \therefore {\text{ Correct option is (B)}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section