Question
The angle between $$A$$ and $$B$$ is $$\theta .$$ The value of the triple product $$A \cdot \left( {B \times A} \right)$$ is
A.
$${A^2}B$$
B.
zero
C.
$${A^2}B\sin \theta $$
D.
$${A^2}B\cos \theta $$
Answer :
zero
Solution :
In scalar triple product of vectors, the positions of dot and cross can be interchanged, i.e.
$$\eqalign{
& A \cdot \left( {B \times A} \right) = \left( {A \times B} \right) \cdot A = \left( {A \times A} \right) \cdot B \cr
& {\text{but}}\,A \times A = 0 \cr
& \therefore A \cdot \left( {B \times A} \right) = 0 \cr} $$
Alternative
$$\eqalign{
& A \cdot \left( {B \times A} \right) \cr
& {\text{Let}}\,\,A \times B = C \cr} $$
The direction of $$C$$ is $$ \bot $$ to $$A$$ and $$B$$ from cross product formula
So, $$A \cdot C = 0$$ (since, $$A$$ and $$C$$ are $$ \bot $$ to each other)