Intensity of electric field due to a Dipole
$$E = \frac{p}{{4\pi {\varepsilon _0}{r^3}}}\sqrt {3{{\cos }^2}\theta + 1} \Rightarrow E \propto \frac{1}{{{r^3}}}$$
52.
A pendulum bob of mass $$m$$ carrying a charge $$q$$ is at rest with its string making an angle $$\theta $$ with the vertical in a uniform horizontal electric field $$E.$$ The tension in the string is
A
$$\frac{{mg}}{{\sin \theta }}\,{\text{and}}\,\frac{{qE}}{{\cos \theta }}$$
B
$$\frac{{mg}}{{\cos \theta }}\,{\text{and}}\,\frac{{qE}}{{\sin \theta }}$$
When an electric dipole is placed in an electric field $$E,$$ a torque $$\tau = p \times E$$ acts on it. This torque tries to rotate the dipole.
If the dipole is rotated from an angle $${\theta _1}$$ to $${\theta _2}$$ then work done by external force is given by
$$W = pE\left( {\cos {\theta _1} - \cos {\theta _2}} \right)\,......\left( {\text{i}} \right)$$
Putting $${\theta _1} = {0^ \circ },{\theta _2} = {90^ \circ }$$ in the Eq. (i), we get
$$\eqalign{
& W = pE\left( {\cos {0^ \circ } - \cos {{90}^ \circ }} \right) \cr
& = pE\left( {1 - 0} \right) = pE \cr} $$
54.
Figure shows an electric quadrupole, with quadrupole moment $$\left( {Q = 2q{\ell ^2}} \right).$$ The electric field at a distance from its centre at the axis of the quadrupole is given by
A
$$\left( {\frac{1}{{4\pi { \in _0}}}} \right)\frac{Q}{{{r^4}}}$$
B
$$\left( {\frac{1}{{4\pi { \in _0}}}} \right)\frac{{2Q}}{{{r^4}}}$$
C
$$\left( {\frac{1}{{4\pi { \in _0}}}} \right)\frac{{3Q}}{{{r^4}}}$$
55.
Figure shows a uniformly charged hemisphere of radius $$R.$$ It has a volume charge density $$\rho .$$ If the electric field at a point $$2R,$$ above its centre is $$E,$$ then what is the electric field at the point $$2R$$ below its centre?
Let us complete the sphere. Electric field due to lower part at $$A$$ is equal to electric field due to upper part at $$B = E$$ (given) Electric field due to lower part at
$$B =$$ electric field due to full sphere - electric field due to upper part
$$\eqalign{
& = \frac{{kQ}}{{{{\left( {2R} \right)}^2}}} - E \cr
& = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{\rho \left( {\frac{4}{3}} \right)\pi {R^3}}}{{4{R^2}}} - E \cr
& = \frac{{\rho R}}{{12{\varepsilon _0}}} - E \cr} $$
56.
In the figure the net electric flux through the area $$A$$ is $$\phi = \vec E \cdot \vec A$$ when the system is in air. On immersing the system in water the net electric flux through the area
Since electric field $${\vec E}$$ decreases inside water, therefore flux $$\phi = \vec E \cdot \vec A$$ also decreases.
57.
A particle of charge $$-q$$ and mass $$m$$ moves in a circle of radius around an infinitely long line charge of linear charge density $$ + \lambda .$$ Then time period will be
A
$$T = 2\pi r\sqrt {\frac{m}{{2k\lambda q}}} $$
B
$${T^2} = \frac{{4{\pi ^2}m}}{{2k\lambda q}}{r^3}$$
C
$$T = \frac{1}{{2\pi r}}\sqrt {\frac{{2k\lambda q}}{m}} $$
D
$$T = \frac{1}{{2\pi r}}\sqrt {\frac{m}{{2k\lambda q}}} $$
58.
A point charge $$50\,\mu C$$ is located in the $$x-y$$ plane at a point whose position vector is $${{\vec r}_0} = \left( {2\hat i + 3\hat j} \right)m.$$ Then electric field at the point whose position vector is $$\vec r = \left( {8\hat i - 5\hat j} \right)m.$$ (in vector form) will be
A
$$90\left( { - 3\hat i + 4\hat j} \right)V/m$$
B
$$900\left( {3\hat i - 4\hat j} \right)V/m$$
C
$$90\left( {3\hat i - 4\hat j} \right)V/m$$
D
$$900\left( { - 3\hat i + 4\hat j} \right)V/m$$
Answer :
$$900\left( {3\hat i - 4\hat j} \right)V/m$$
$$\eqalign{
& \vec E = \frac{{kQ}}{{{r^3}}}\vec r = \frac{{9 \times {{10}^9} \times 50 \times {{10}^{ - 6}}}}{{\left| {\vec r - {{\vec r}_0}} \right|}} \times \left( {\vec r - {{\vec r}_0}} \right) \cr
& {\text{where}}\,\,\vec r - {{\vec r}_0} = \left( {8\hat i - 5\hat j} \right) - \left( {2\hat i + 3\hat j} \right) = 6\hat i - 8\hat j \cr
& \vec E = 900\left( {3\hat i - 4\hat j} \right)V/m \cr} $$
59.
Let there be a spherically symmetric charge distribution with charge density varying as $$\rho \left( r \right) = {\rho _0}\left( {\frac{5}{4} - \frac{r}{R}} \right)$$ upto $$r = R,$$ and $$\rho \left( r \right) = 0$$ for $$r > R,$$ where $$r$$ is the distance from the origin. The electric field at a distance $$r\left( {r < R} \right)$$ from the origin is given by
A
$$\frac{{{\rho _0}r}}{{4{\varepsilon _0}}}\left( {\frac{5}{3} - \frac{r}{R}} \right)$$
B
$$\frac{{4\pi {\rho _0}r}}{{3{\varepsilon _0}}}\left( {\frac{5}{3} - \frac{r}{R}} \right)$$
C
$$\frac{{4{\rho _0}r}}{{4{\varepsilon _0}}}\left( {\frac{5}{4} - \frac{r}{R}} \right)$$
D
$$\frac{{{\rho _0}r}}{{3{\varepsilon _0}}}\left( {\frac{5}{4} - \frac{r}{R}} \right)$$
Let us consider a spherical shell of radius $$x$$ and thickness $$dx.$$
Charge on this shell
$$dq = \rho .4\pi {x^2}dx = {\rho _0}\left( {\frac{5}{4} - \frac{x}{R}} \right).4\pi {x^2}dx$$
$$\therefore $$ Total charge in the spherical region from centre to $$r\left( {r < R} \right)$$ is
$$q = \int {dq = 4\pi {\rho _0}\int\limits_0^r {\left( {\frac{5}{4} - \frac{x}{R}} \right){x^2}dx} } $$
$$ = 4\pi {\rho _0}\left[ {\frac{5}{4}.\frac{{{r^3}}}{3} - \frac{1}{R}.\frac{{{r^4}}}{4}} \right] = \pi {\rho _0}{r^3}\left( {\frac{5}{3} - \frac{r}{R}} \right)$$
$$\therefore $$ Electric field at $$r,E = \frac{1}{{4\pi { \in _0}}}.\frac{q}{{{r^2}}}$$
$$ = \frac{1}{{4\pi { \in _0}}}.\frac{{\pi {\rho _0}{r^3}}}{{{r^2}}}\left( {\frac{5}{3} - \frac{r}{R}} \right) = \frac{{{\rho _0}r}}{{4{ \in _0}}}\left( {\frac{5}{3} - \frac{r}{R}} \right)$$
60.
A charged wire is bent in the form of a semicircular arc of radius $$a.$$ If charge per unit length is $$\lambda $$ coulomb/metre, the electric field at the centre $$O$$ is
A
$$\frac{\lambda }{{2\pi {a^2}{\varepsilon _0}}}$$
B
$$\frac{\lambda }{{4{\pi ^2}{\varepsilon _0}a}}$$
Considering symmetric elements each of length $$dl$$ at $$A$$ and $$B,$$ we know that electric fields perpendicular to $$PO$$ are cancelled and those along
$$PO$$ are added. The electric field due to an element
of length $$dl\left( { = ad\theta } \right)$$ along $$PO.$$
$$\eqalign{
& dE = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{d\theta }}{{{a^2}}}\cos \theta \cr
& = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{\lambda dl}}{{{a^2}}}\cos \theta \cr
& = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{\lambda \left( {a\,d\theta } \right)}}{{{a^2}}}\cos \theta \,\,\,\left( {\because dl = a\,d\theta } \right) \cr} $$
Net electric field at $$O$$
$$\eqalign{
& E = \int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} d E = 2\int_0^{\frac{\pi }{2}} {\frac{1}{{4\pi {\varepsilon _0}}}} \frac{{\lambda a\cos \theta \,d\theta }}{{{a^2}}} \cr
& = 2 \cdot \frac{1}{{4\pi {\varepsilon _0}}}\frac{\lambda }{a}\left[ {\sin \theta } \right]_0^{\frac{\pi }{2}} \cr
& = 2 \cdot \frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{\lambda }{a} \cdot 1 = \frac{\lambda }{{2\pi {\varepsilon _0}a}} \cr} $$