Question

Let there be a spherically symmetric charge distribution with charge density varying as $$\rho \left( r \right) = {\rho _0}\left( {\frac{5}{4} - \frac{r}{R}} \right)$$     upto $$r = R,$$  and $$\rho \left( r \right) = 0$$   for $$r > R,$$  where $$r$$ is the distance from the origin. The electric field at a distance $$r\left( {r < R} \right)$$   from the origin is given by

A. $$\frac{{{\rho _0}r}}{{4{\varepsilon _0}}}\left( {\frac{5}{3} - \frac{r}{R}} \right)$$  
B. $$\frac{{4\pi {\rho _0}r}}{{3{\varepsilon _0}}}\left( {\frac{5}{3} - \frac{r}{R}} \right)$$
C. $$\frac{{4{\rho _0}r}}{{4{\varepsilon _0}}}\left( {\frac{5}{4} - \frac{r}{R}} \right)$$
D. $$\frac{{{\rho _0}r}}{{3{\varepsilon _0}}}\left( {\frac{5}{4} - \frac{r}{R}} \right)$$
Answer :   $$\frac{{{\rho _0}r}}{{4{\varepsilon _0}}}\left( {\frac{5}{3} - \frac{r}{R}} \right)$$
Solution :
Let us consider a spherical shell of radius $$x$$ and thickness $$dx.$$
Charge on this shell
$$dq = \rho .4\pi {x^2}dx = {\rho _0}\left( {\frac{5}{4} - \frac{x}{R}} \right).4\pi {x^2}dx$$
$$\therefore $$ Total charge in the spherical region from centre to $$r\left( {r < R} \right)$$   is
$$q = \int {dq = 4\pi {\rho _0}\int\limits_0^r {\left( {\frac{5}{4} - \frac{x}{R}} \right){x^2}dx} } $$
Electric Field mcq solution image
$$ = 4\pi {\rho _0}\left[ {\frac{5}{4}.\frac{{{r^3}}}{3} - \frac{1}{R}.\frac{{{r^4}}}{4}} \right] = \pi {\rho _0}{r^3}\left( {\frac{5}{3} - \frac{r}{R}} \right)$$
$$\therefore $$ Electric field at $$r,E = \frac{1}{{4\pi { \in _0}}}.\frac{q}{{{r^2}}}$$
$$ = \frac{1}{{4\pi { \in _0}}}.\frac{{\pi {\rho _0}{r^3}}}{{{r^2}}}\left( {\frac{5}{3} - \frac{r}{R}} \right) = \frac{{{\rho _0}r}}{{4{ \in _0}}}\left( {\frac{5}{3} - \frac{r}{R}} \right)$$

Releted MCQ Question on
Electrostatics and Magnetism >> Electric Field

Releted Question 1

A hollow metal sphere of radius $$5 cms$$  is charged such that the potential on its surface is $$10\,volts.$$  The potential at the centre of the sphere is

A. zero
B. $$10\,volts$$
C. same as at a point $$5 cms$$  away from the surface
D. same as at a point $$25 cms$$  away from the surface
Releted Question 2

Two point charges $$ + q$$  and $$ - q$$  are held fixed at $$\left( { - d,o} \right)$$  and $$\left( {d,o} \right)$$  respectively of a $$x-y$$  coordinate system. Then

A. The electric field $$E$$ at all points on the $$x$$-axis has the same direction
B. Electric field at all points on $$y$$-axis is along $$x$$-axis
C. Work has to be done in bringing a test charge from $$\infty $$ to the origin
D. The dipole moment is $$2qd$$  along the $$x$$-axis
Releted Question 3

Three positive charges of equal value $$q$$ are placed at the vertices of an equilateral triangle. The resulting lines of force should be sketched as in

A. Electric Field mcq option image
B. Electric Field mcq option image
C. Electric Field mcq option image
D. Electric Field mcq option image
Releted Question 4

A uniform electric field pointing in positive $$x$$-direction exists in a region. Let $$A$$ be the origin, $$B$$ be the point on the $$x$$-axis at $$x = + 1cm$$   and $$C$$ be the point on the $$y$$-axis at $$y = + 1cm.$$   Then the potentials at the points $$A,B$$  and $$C$$ satisfy:

A. $${V_A} < {V_B}$$
B. $${V_A} > {V_B}$$
C. $${V_A} < {V_C}$$
D. $${V_A} > {V_C}$$

Practice More Releted MCQ Question on
Electric Field


Practice More MCQ Question on Physics Section