Question

Let $$f\left( x \right) = \sin x$$   and $$g\left( x \right) = \ln \left| x \right|.$$    If the ranges of the composition functions $$fog$$  and $$gof$$  are $${R_1}$$ and $${R_2}$$ respectively, then

A. $${R_1} = \left\{ {u: - 1 \leqslant u < 1} \right\},{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
B. $${R_1} = \left\{ {u: - \infty < u < 0} \right\},{R_2} = \left\{ {v: - 1 \leqslant v \leqslant 0} \right\}$$
C. $${R_1} = \left\{ {u: - 1 < u < 1} \right\},{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
D. $${R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\},{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\}$$  
Answer :   $${R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\},{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\}$$
Solution :
$$\eqalign{ & {\text{We have }}fog\left( x \right) = f\left( {g\left( x \right)} \right) = \sin \left( {\ln \left| x \right|} \right) \cr & \therefore {R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\}\,\left( {\because - 1 \leqslant \sin \theta \leqslant 1,\forall \theta } \right) \cr & {\text{Also }}gof\,\left( x \right) = g\left( {f\left( x \right)} \right) = \ln \left| {\sin x} \right| \cr & \because 0 \leqslant \left| {\sin x} \right| \leqslant 1 \cr & \therefore - \infty < \ln \left| {\sin x} \right| \leqslant 0 \cr & \therefore {R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\} \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section