Question

Let $$\frac{{df\left( x \right)}}{{dx}} = \frac{{{e^{\sin \,x}}}}{x},\,x > 0.$$     If $$\int_1^4 {\frac{{3{e^{\sin \,{x^3}}}}}{x}dx = f\left( k \right) - f\left( 1 \right)} $$       then one of the possible values of $$k$$ is :

A. 16
B. 63
C. 64  
D. 15
Answer :   64
Solution :
$$\eqalign{ & \frac{{df\left( x \right)}}{{dx}} = \frac{{{e^{\sin \,x}}}}{x} \cr & \Rightarrow \frac{{df\left( {{x^3}} \right)}}{{d\left( {{x^3}} \right)}} = \frac{{{e^{\sin \,{x^3}}}}}{{{x^3}}} \cr & \Rightarrow \frac{{df\left( {{x^3}} \right)}}{{d\left( {{x^3}} \right)}}.\frac{{d\left( {{x^3}} \right)}}{{dx}} = \frac{{{e^{\sin \,{x^3}}}}}{{{x^3}}}.3{x^2} \cr & \Rightarrow \frac{{df\left( {{x^3}} \right)}}{{dx}} = \frac{{3{e^{\sin \,{x^3}}}}}{x} \cr & \Rightarrow \int_1^4 {\frac{{3{e^{\sin \,{x^3}}}}}{x}dx} = \left[ {f\left( {{x^3}} \right)} \right]_{x = 1}^4 = f\left( {64} \right) - f\left( 1 \right) \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section