Question
Let $${a_1},{a_2},......{a_{10}}$$ be in A.P. and $${h_1},{h_2},......{h_{10}}$$ be in H.P. If $${a_1} = {h_1} = 2$$ and $${a_{10}} = {h_{10}} = 3,$$ then $${a_4}{h_7}$$ is
A.
2
B.
3
C.
5
D.
6
Answer :
6
Solution :
$$\eqalign{
& {a_1} = {h_1} = 2,{a_{10}} = {h_{10}} = 3 \cr
& 3 = {a_{10}} = 2 + 9d \cr
& \Rightarrow \,d = \frac{1}{9} \cr
& \therefore \,\,{a_4} = 2 + 3d = \frac{7}{3} \cr
& \,\,\,\,\,\,\,3 = {h_{10}} \Rightarrow \frac{1}{3} = \frac{1}{{{h_{10}}}} = \frac{1}{2} + 9D \cr
& \therefore \,\,D = - \frac{1}{{54}} \cr
& \,\,\,\,\,\frac{1}{{{h_7}}} = \frac{1}{2} + 6D = \frac{1}{2} - \frac{1}{9} = \frac{7}{{18}} \cr
& \therefore \,\,{a_4}{h_7} = \frac{7}{3} \times \frac{{18}}{7} = 6. \cr} $$