Solution :

$$\eqalign{
& N\cos \theta = mg\,\,{\text{and}}\,\,N\sin \theta = m{\omega ^2}r \cr
& \therefore \tan \theta = \frac{{{\omega ^2}r}}{g}\,......\left( {\text{i}} \right) \cr
& {\text{Given}}\,y = {x^2} \cr
& \therefore \frac{{dy}}{{dx}} = 2x \cr
& {\text{or}}\,\,\tan \theta = 2 \times 1 = 2\,......\left( {{\text{ii}}} \right) \cr} $$
From above equations, we get
$$\omega = \sqrt {2g} \,\,\left( {r = 1\;m} \right)$$