Question
In an inductor of self-inductance $$L = 2\,mH,$$ current changes with time according to relation $$i = {t^2}{e^{ - t}}.$$ At what time emf is zero?
A.
$$4\,s$$
B.
$$3\,s$$
C.
$$2\,s$$
D.
$$1\,s$$
Answer :
$$2\,s$$
Solution :
It is given that emf is zero i.e.,
$$\eqalign{
& e = - L\frac{{di}}{{dt}} = 0 \cr
& {\text{or}}\,\,L\frac{{di}}{{dt}} = 0 \cr
& {\text{or}}\,\,\frac{d}{{dt}}\left( {{t^2}{e^{ - t}}} \right) = 0\,\,\left( {{\text{As,}}\,\,i = {t^2}{e^{ - t}}} \right) \cr
& {\text{or}}\,\,2t \times {e^{ - t}} + {t^2} \times \left( { - 1} \right){e^{ - t}} = 0 \cr
& {\text{or}}\,\,t{e^{ - t}}\left( {2 - t} \right) = 0\,\,{\text{or}}\,\,t = 2\,s\,\,\,\left( {\because t{e^{ - t}} \ne 0} \right) \cr} $$