Solution :

$$\eqalign{
& \frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2 = \frac{3}{2}\left( {\frac{1}{2}mv_0^2} \right) \cr
& \Rightarrow v_1^2 + v_2^2 = \frac{3}{2}v_0^2\,......\left( {\text{i}} \right) \cr} $$
From momentum conservation
$$m{v_0} = m\left( {{v_1} + {v_2}} \right)\,......\left( {{\text{ii}}} \right)$$
Squarring both sides,
$$\eqalign{
& {\left( {{v_1} + {v_2}} \right)^2} = v_0^2 \cr
& \Rightarrow v_1^2 + v_2^2 + 2{v_1}{v_2} = v_0^2 \cr
& 2{v_1}{v_2} = - \frac{{v_0^2}}{2} \cr
& {\left( {{v_1} - {v_2}} \right)^2} = v_1^2 + v_2^2 - 2{v_1}{v_2} = \frac{3}{2}v_0^2 + \frac{{v_0^2}}{2} \cr} $$
Solving we get relative velocity between the two particles
$${v_1} - {v_2} = \sqrt 2 {v_0}$$