Question
In a circuit, $$L,C$$ and $$R$$ are connected in series with an alternating voltage source of frequency $$f.$$ The current leads the voltage by $${45^ \circ }.$$ The value of $$C$$ is
A.
$$\frac{1}{{2\pi f\left( {2\pi fL + R} \right)}}$$
B.
$$\frac{1}{{\pi f\left( {2\pi fL + R} \right)}}$$
C.
$$\frac{1}{{2\pi f\left( {2\pi fL - R} \right)}}$$
D.
$$\frac{1}{{\pi f\left( {2\pi fL - R} \right)}}$$
Answer :
$$\frac{1}{{2\pi f\left( {2\pi fL - R} \right)}}$$
Solution :
Phase difference between current and voltage in $$LCR$$ series circuit is given by
$$\tan \phi = \frac{{\omega L - \frac{1}{{\omega C}}}}{R}\,\,\left[ {_{\frac{1}{{\omega C}}\, = \,\,{\text{capacitive reactance}}}^{\omega L \,= \,\,{\text{inductive reactance}}}} \right]$$
$$\phi $$ being the angle by which the current leads the voltage.
Given, $$\phi = {45^ \circ }$$
$$\eqalign{
& \therefore \tan {45^ \circ } = \frac{{\omega L - \frac{1}{{\omega C}}}}{R} \cr
& \Rightarrow 1 = \frac{{\omega L - \frac{1}{{\omega C}}}}{R} \cr
& \Rightarrow R = \omega L - \frac{1}{{\omega C}} \cr} $$
$$\eqalign{
& \Rightarrow \omega C = \frac{1}{{\left( {\omega L - R} \right)}} \cr
& \Rightarrow C = \frac{1}{{\omega \left( {\omega L - R} \right)}} \cr
& = \frac{1}{{2\pi f\left( {2\pi fL - R} \right)}} \cr} $$