Question

If lines $$x = y = z$$   and $$x = \frac{y}{2} = \frac{z}{3}$$   and third line passing through $$\left( {1,\,1,\,1} \right)$$   form a triangle of area $$\sqrt 6 $$ units, then the point of intersection of third line with the second line will be :

A. $$\left( {1,\,2,\,3} \right)$$
B. $$\left( {2,\,4,\,6} \right)$$  
C. $$\left( {\frac{4}{3},\,\frac{8}{3},\,\frac{{12}}{3}} \right)$$
D. None of these
Answer :   $$\left( {2,\,4,\,6} \right)$$
Solution :
$${\text{Let any point on the second line be}}\left( {\lambda ,\,2\lambda ,\,3\lambda } \right)$$
Three Dimensional Geometry mcq solution image
$$\eqalign{ & \cos \,\theta = \frac{6}{{\sqrt {42} }},\,\sin \,\theta = \frac{{\sqrt 6 }}{{\sqrt {42} }} \cr & {\Delta _{OAB}} = \frac{1}{2}\left( {OA} \right)OB\,\sin \,\theta \cr & = \frac{1}{2}\sqrt 3 \lambda \sqrt {14} \times \frac{{\sqrt 6 }}{{\sqrt {42} }} \cr & = \sqrt 6 {\text{ or }}\lambda = 2 \cr & {\text{So, }}B{\text{ is }}\left( {2,\,4,\,6} \right) \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section