Question

If $$f\left( x \right) = \frac{{{e^x}}}{{1 + {e^x}}},{I_1} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {x\,g\left\{ {x\left( {1 - x} \right)} \right\}} dx,$$         and $${I_2} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {g\left\{ {x\left( {1 - x} \right)} \right\}} dx,$$       then the value of $$\frac{{{I_2}}}{{{I_1}}}$$ is-

A. $$1$$
B. $$-3$$
C. $$-1$$
D. $$2$$  
Answer :   $$2$$
Solution :
$$\eqalign{ & f\left( x \right) = \frac{{{e^x}}}{{1 + {e^x}}} \cr & \Rightarrow f\left( { - x} \right) = \frac{{{e^{ - x}}}}{{1 + {e^{ - x}}}} = \frac{1}{{{e^x} + 1}} \cr & \therefore f\left( x \right) + f\left( { - x} \right) = 1\,\forall \,x \cr & {\text{Now}}\,\,{I_1} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {x\,g\left\{ {x\left( {1 - x} \right)} \right\}dx} \cr & = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {\left( {1 - x} \right)\,g\left\{ {x\left( {1 - x} \right)} \right\}dx} \cr & \left[ {{\text{Using }}\int\limits_a^b {f\left( x \right)} dx\,a = \int\limits_a^b {f\left( {a + b - x} \right)dx} } \right] \cr & = {I_2} - {I_1}\,\,\, \Rightarrow 2{I_1} = {I_2} \cr & \therefore \frac{{{I_2}}}{{{I_1}}} = 2 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section