Solution :

Let the ball takes $$T$$ second to reach maximum height $$H.$$
$$v = u - gT$$
put $$v = 0$$ (at height $$H$$ )
$$\eqalign{
& \therefore u = gT \cr
& {\text{or}}\,T = \frac{u}{g}\,......\left( {\text{i}} \right) \cr} $$
Velocity attained by the ball in $$\left( {T - t} \right)s$$ is,
$$\eqalign{
& v' = u - g\left( {T - t} \right) = u - gT + gt \cr
& = u - g\frac{u}{g} + gt = u - u + gt \cr
& v' = gt\,.......\left( {{\text{ii}}} \right) \cr} $$
Hence, distance travelled in last $$t\,\sec$$ of its ascent
$$\eqalign{
& CB = v't - \frac{1}{2}g{t^2} = \left( {gt} \right)t - \frac{1}{2}g{t^2} \cr
& = g{t^2} - \frac{1}{2}g{t^2}\,\,\left[ {{\text{From}}\,{\text{Eq}}{\text{.}}\,\left( {{\text{ii}}} \right)} \right] \cr
& = \frac{1}{2}g{t^2} \cr} $$