Question
      
        From a solid sphere of mass $$M$$ and radius $$R$$ a cube of maximum possible volume is cut. Moment of inertia of cube about an axis passing through its center and perpendicular to one of its faces is:      
       A.
        $$\frac{{4M{R^2}}}{{9\sqrt 3 \pi }}$$                 
              
       B.
        $$\frac{{4M{R^2}}}{{3\sqrt 3 \pi }}$$              
       C.
        $$\frac{{M{R^2}}}{{32\sqrt 2 \pi }}$$              
       D.
        $$\frac{{M{R^2}}}{{16\sqrt 2 \pi }}$$              
            
                Answer :  
        $$\frac{{4M{R^2}}}{{9\sqrt 3 \pi }}$$      
             Solution :
         
$$\eqalign{
  & {\text{Here  }}a = \frac{2}{{\sqrt 3 }}R  \cr 
  & {\text{Now, }}\frac{M}{{M'}} = \frac{{\frac{4}{3}\pi {R^3}}}{{{a^3}}}  \cr 
  &  = \frac{{\frac{4}{3}\pi {R^3}}}{{{{\left( {\frac{2}{{\sqrt 3 }}R} \right)}^3}}}  \cr 
  &  = \frac{{\sqrt 3 }}{2}\pi .\,\,\,\,\,\,\,\,\,\,M' = \frac{{2m}}{{\sqrt 3 \pi }} \cr} $$
Moment of inertia of the cube about the given axis,
 
$$I = \frac{{M'{a^2}}}{6} = \frac{{\frac{{2M}}{{\sqrt 3 \pi }} \times {{\left( {\frac{2}{{\sqrt 3 }}R} \right)}^2}}}{6} = \frac{{4M{R^2}}}{{9\sqrt 3 \pi}}$$