Solution :
From given conditions, $${V_A} = {V_C}$$ and $${V_B} = 0$$
$$\eqalign{
& \Rightarrow {V_B} = \frac{{k\left( {Q - {q_1}} \right)}}{{3a}} + \frac{{k{q_2}}}{{2a}} + \frac{{k{q_1}}}{{2a}} = 0 \cr
& \Rightarrow 2Q + {q_1} + 3{q_2} = 0\,......\left( {\text{i}} \right) \cr} $$

$$\eqalign{
& {\text{Using}}\,\,{V_A} = {V_C} \cr
& \frac{{k\left( {Q - {q_1}} \right)}}{{3a}} + \frac{{k{q_2}}}{{3a}} + \frac{{k{q_1}}}{{3a}} \cr
& = \frac{{k{q_1}}}{a} + \frac{{k\left( {Q - {q_1}} \right)}}{{3a}} + \frac{{k{q_2}}}{{2a}} \cr
& \Rightarrow {q_1} = - \frac{{{q_2}}}{4}\,......\left( {{\text{ii}}} \right) \cr
& {\text{Using it in }}\left( 1 \right),{\text{ }}{q_2} = - \frac{8}{{11}}Q \cr} $$