Question
Copper of fixed volume $$V$$ is drawn into wire of length $$l.$$ When this wire is subjected to a constant force $$F,$$ the extension produced in the wire is $$\Delta l.$$ Which of the following graphs is a straight line?
A.
$$\Delta l\,versus\,\frac{1}{l}$$
B.
$$\Delta l\,versus\,{l^2}$$
C.
$$\Delta l\,versus\,\frac{1}{{{l^2}}}$$
D.
$$\Delta l\,versus\,l$$
Answer :
$$\Delta l\,versus\,{l^2}$$
Solution :
Youngs’ modulus is given by $$Y = \frac{{F \times l}}{{A \times \Delta l}}\,.....\left( {\text{i}} \right)$$
As, $$V = A \times l = {\text{constant}}\,.....\left( {{\text{ii}}} \right)$$
From Eqs. (i) and (ii), we get
$$\eqalign{
& Y = \frac{{F \times {l^2}}}{{V \times \Delta l}} \Rightarrow \Delta l = \frac{F}{{V \times Y}} \times {l^2} \cr
& \Rightarrow \Delta l \propto {l^2} \cr} $$