Solution :
The required centripetal force of particle of mass $$'m\,'$$ to revolve in a circular path is provided by gravitational pull of the mass $$'M\,'$$ present in the sphere of radius $$'r\,'$$.
Therefore
$$\eqalign{
& \frac{{m{v^2}}}{r} = \frac{{GMm}}{{{r^2}}}\,\,\, \Rightarrow \frac{1}{2}m{v^2} = \frac{{GMm}}{{2r}}\,\,\, \Rightarrow K = \frac{{GMm}}{{2r}} \cr
& \therefore M = \frac{{2Kr}}{{Gm}} \cr} $$

Differentiating the above equation w.r.t $$'r\,'$$ we get
$$\eqalign{
& \frac{{dM}}{{dr}} = \frac{{2K}}{{Gm}}{\text{ or }}dM = \frac{{2K}}{{Gm}}dr \cr
& \therefore 4\pi {r^2}dr\rho = \frac{{2K}}{{Gm}}dr \cr
& \therefore \rho = \frac{K}{{2\pi {r^2}mG}} \cr
& \therefore \frac{\rho }{m} = \frac{K}{{2\pi {r^2}{m^2}G}} \cr} $$