Solution :
$$\eqalign{
& {\theta _A} - {\theta _B} = {36^ \circ }C\,\,\left( {{\text{Given}}} \right) \cr
& {K_A} = 2\,{K_B}\,\,\left( {{\text{Given}}} \right) \cr
& {\theta _C} = \frac{{\frac{{{K_A}}}{\ell }{\theta _A} + \frac{{{K_B}}}{\ell }{\theta _B}}}{{\frac{{{K_A}}}{\ell } + \frac{{{K_B}}}{\ell }}} \cr} $$

$$\eqalign{
& \therefore \,\,{\theta _C} = \frac{{2\,{\theta _A} + {\theta _B}}}{3} \cr
& = \frac{{2\,{\theta _A} + {\theta _A} - 36}}{3} \cr
& = \frac{{3\left( {{\theta _A} - 12} \right)}}{3} \cr
& \therefore \,\,{\theta _A} - {\theta _C} = 12 \cr} $$