Question

A student performs an experiment to determine the Young's modulus of a wire, exactly $$2\, m$$  long, by Searle's method. In a particular reading, the student measures the extension in the length of the wire to be $$0.8 \,mm$$  with an uncertainty of $$ \pm 0.05\,mm$$   at a load of exactly $$1.0 \,kg.$$   The student also measures the diameter of the wire to be $$0.4 \,mm$$  with an uncertainty of $$ \pm 0.01\,mm.$$  Take $$g = 9.8\,m/{s^2}$$   (exact). The Young's modulus obtained from the reading is-

A. $$\left( {2.0 \pm 0.3} \right) \times {10^{11}}N/{m^2}$$
B. $$\left( {2.0 \pm 0.2} \right) \times {10^{11}}N/{m^2}$$  
C. $$\left( {2.0 \pm 0.1} \right) \times {10^{11}}N/{m^2}$$
D. $$\left( {2.0 \pm 0.05} \right) \times {10^{11}}N/{m^2}$$
Answer :   $$\left( {2.0 \pm 0.2} \right) \times {10^{11}}N/{m^2}$$
Solution :
$$\eqalign{ & Y = \frac{{4mgL}}{{\pi {D^2}\ell }} \cr & = \frac{{4 \times 1 \times 9.8 \times 2}}{{\pi {{\left( {0.4 \times {{10}^{ - 3}}} \right)}^2} \times \left( {0.8 \times {{10}^{ - 3}}} \right)}} \cr & = 2.0 \times {10^{11}}\,N/{m^2} \cr & {\text{Now, }}\frac{{\Delta Y}}{Y} = \frac{{2\Delta D}}{D} + \frac{{\Delta \ell }}{\ell } \cr & \left[ {\because {\text{ the value of }}m,{\text{ }}g{\text{ and }}L{\text{ are exact}}} \right] \cr & = 2 \times \frac{{0.01}}{{0.4}} + \frac{{0.05}}{{0.8}} \cr & = 2 \times 0.025 + 0.0625 \cr & = 0.05 + 0.0625 \cr & = 0.1125 \cr & \Rightarrow \Delta Y = 2 \times {10^{11}} \times 0.1125 \cr & = 0.225 \times {10^{11}} \cr & = 0.2 \times {10^{11\,}}N/{m^2} \cr} $$
Note: We can also take value of $$y$$ from options given without calculating it as it is same in all options.
$$\therefore Y = \left( {2 \pm 0.2} \right) \times {10^{11}}N/{m^2}$$

Releted MCQ Question on
Basic Physics >> Unit and Measurement

Releted Question 1

The dimension of $$\left( {\frac{1}{2}} \right){\varepsilon _0}{E^2}$$  ($${\varepsilon _0}$$ : permittivity of free space, $$E$$ electric field)

A. $$ML{T^{ - 1}}$$
B. $$M{L^2}{T^{ - 2}}$$
C. $$M{L^{ - 1}}{T^{ - 2}}$$
D. $$M{L^2}{T^{ - 1}}$$
Releted Question 2

A quantity $$X$$ is given by $${\varepsilon _0}L\frac{{\Delta V}}{{\Delta t}}$$   where $${ \in _0}$$ is the permittivity of the free space, $$L$$ is a length, $$\Delta V$$ is a potential difference and $$\Delta t$$ is a time interval. The dimensional formula for $$X$$ is the same as that of-

A. resistance
B. charge
C. voltage
D. current
Releted Question 3

A cube has a side of length $$1.2 \times {10^{ - 2}}m$$  . Calculate its volume.

A. $$1.7 \times {10^{ - 6}}{m^3}$$
B. $$1.73 \times {10^{ - 6}}{m^3}$$
C. $$1.70 \times {10^{ - 6}}{m^3}$$
D. $$1.732 \times {10^{ - 6}}{m^3}$$
Releted Question 4

Pressure depends on distance as, $$P = \frac{\alpha }{\beta }exp\left( { - \frac{{\alpha z}}{{k\theta }}} \right),$$     where $$\alpha ,$$ $$\beta $$ are constants, $$z$$ is distance, $$k$$ is Boltzman’s constant and $$\theta $$ is temperature. The dimension of $$\beta $$ are-

A. $${M^0}{L^0}{T^0}$$
B. $${M^{ - 1}}{L^{ - 1}}{T^{ - 1}}$$
C. $${M^0}{L^2}{T^0}$$
D. $${M^{ - 1}}{L^1}{T^2}$$

Practice More Releted MCQ Question on
Unit and Measurement


Practice More MCQ Question on Physics Section