Solution :
As shown in figure, a light ray from the coin will not emerge out of liquid, if $$i > C.$$

Therefore, minimum radius $$R$$ corresponds to $$i = C.$$

In $$\Delta SAB,$$
$$\eqalign{
& \frac{R}{h} = \tan C \cr
& {\text{or}}\,\,R = h\tan C \cr
& {\text{or}}\,\,R = \frac{h}{{\sqrt {{\mu ^2} - 1} }} \cr
& {\text{Given,}}\,\,R = 3\,cm,h = 4\,cm \cr
& {\text{Hence,}}\,\,\frac{3}{4} = \frac{1}{{\sqrt {{\mu ^2} - 1} }} \cr
& {\text{or}}\,\,{\mu ^2} = \frac{{25}}{9}\,\,{\text{or }}\mu = \frac{5}{3} \cr
& {\text{But}}\,\,\mu = \frac{c}{v}\,\,{\text{or}}\,\,v = \frac{c}{\mu } \cr
& = \frac{{3 \times {{10}^8}}}{{\frac{5}{3}}} \cr
& = 1.8 \times {10^8}\,m/s \cr} $$