Question
A rod of mass $$M$$ and length $$L$$ is hinged at its centre of mass so that it can rotate in a vertical plane. Two springs each of stiffness $$k$$ are connected at its ends, as shown in the figure. The time period of $$SHM$$ is
A.
$$2\,\pi \sqrt {\frac{M}{{6k}}} $$
B.
$$2\,\pi \sqrt {\frac{M}{{3k}}} $$
C.
$$2\,\pi \sqrt {\frac{{ML}}{k}} $$
D.
$$\pi \sqrt {\frac{M}{{6k}}} $$
Answer :
$$2\,\pi \sqrt {\frac{M}{{6k}}} $$
Solution :
The restoring torque (for small $$\theta $$)

$$\eqalign{
& {\tau _{{\text{rest}}}} = - \left[ {\frac{{kL\theta }}{2} \times \frac{L}{2}} \right] \times 2 = \frac{{k{L^2}}}{2}\left( { - \theta } \right) \cr
& \therefore \alpha = \frac{{{\tau _{{\text{rest}}}}}}{I} = \frac{{\frac{{k{L^2}}}{2}}}{{\frac{{M{L^2}}}{{12}}}}\left( { - \theta } \right) = \frac{{6k}}{M}\left( { - \theta } \right) \cr
& \therefore T = 2\pi \sqrt {\frac{M}{{6k}}} . \cr} $$