Solution :
Given $$X$$ is greater than $$2\Omega $$ when the bridge is balanced
$$\frac{R}{\ell } = \frac{X}{{100 - \ell }}$$

Case (i)
$$\eqalign{
& {\text{or,}}\,100R - R\ell = \ell X\,\,\,{\text{or,}}\,200 - 2\ell = \ell X \cr
& {\text{or,}}\,\ell = \frac{{200}}{{X + 2}} \cr} $$
When the resistances are interchanged the jockey shifts $$20\,cm.$$ Therefore
$$\eqalign{
& \frac{X}{{\ell + 20}} = \frac{2}{{80 - \ell }} \cr
& 80X - \ell X = 2\ell + 40 \cr
& {\text{or,}}\,80X = \ell \left( {X + 2} \right) + 40 \cr
& {\text{or,}}\,80X = \left( {\frac{{200}}{{X + 2}}} \right)\left( {X + 2} \right) + 40 \cr
& {\text{or,}}\,X = \frac{{240}}{{80}} = 3\Omega . \cr} $$