Question
      
        A ray of light from a denser medium strike a rarer medium at an angle of incidence $$i$$ (see Fig). The reflected and retracted rays make an angle of $${{{90}^ \circ }}$$ with each other. The angles of reflection and refraction are $$r$$ and $$r’$$ The critical angle is
  
                                
       A.
        $${\sin ^{ - 1}}\left( {\tan r} \right)$$                 
              
       B.
        $${\sin ^{ - 1}}\left( {\tan i} \right)$$              
       C.
        $${\sin ^{ - 1}}\left( {\tan r'} \right)$$              
       D.
        $${\tan ^{ - 1}}\left( {\sin i} \right)$$              
            
                Answer :  
        $${\sin ^{ - 1}}\left( {\tan r} \right)$$      
             Solution :
        $$C = {\sin ^{ - 1}}\left( {\frac{1}{{_2^1\mu }}} \right)\,\,\,.....\left( {\text{i}} \right)$$
Applying Snell's law at $$P,$$ we get
$$\eqalign{
  & _2^1\mu  = \frac{{\sin r'}}{{\sin i}}  \cr 
  &  = \frac{{\sin \left( {90 - r} \right)}}{{\sin r}}\left[ {\because \,\,i = r,r' + r = {{90}^ \circ }} \right]  \cr 
  & \because \,\,_2^1\mu  = \frac{{\cos r}}{{\sin r}}\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
From (i) and (ii)
$$C = {\sin ^{ - 1}}\left( {\tan r} \right)$$