Solution :
Velocity of projectile $$u = 147\,m{s^{ - 1}}$$
angle of projection $$\alpha = {60^ \circ }$$
Let, the time taken by the Projectile from $$O$$ to $$A$$ be $$t$$ where direction $$\beta = {45^ \circ }.$$ As horizontal component of velocity remains constant during the projectile motion.

$$\eqalign{
& \Rightarrow v\cos {45^ \circ } = u\cos {60^ \circ } \cr
& \Rightarrow v \times \frac{1}{{\sqrt 2 }} = 147 \times \frac{1}{2}\, \Rightarrow v = \frac{{147}}{{\sqrt 2 }}m{s^{ - 1}} \cr} $$
For Vertical motion,
$$\eqalign{
& {v_y} = {u_y} - gt \cr
& \Rightarrow v\sin {45^ \circ } = 45\sin {60^ \circ } - 9.8t \cr
& \Rightarrow \frac{{147}}{{\sqrt 2 }} \times \frac{1}{{\sqrt 2 }} = 147 \times \frac{{\sqrt 3 }}{2} - 9.8t \cr
& \Rightarrow 9.8t = \frac{{147}}{2}\left( {\sqrt 3 - 1} \right) \Rightarrow t = 5.49\,s \cr} $$