Solution :
From the ray diagram.

$$\eqalign{
& {\text{In }}\Delta \,ANM\,\,{\text{and }}\Delta \,ADB \cr
& \angle \,ADB = \angle \,ANM = {90^ \circ } \cr
& \angle \,MAN = \angle \,BAN\,\,\left( {{\text{laws of reflection}}} \right) \cr
& {\text{Also, }}\angle \,BAN = \angle \,ABD \cr
& \Rightarrow \,\,\angle \,MAN = \angle \,ABD \cr} $$
∴ $$\Delta \,ANM$$ is similar to $$\Delta \,ADB$$
$$\therefore \,\,\frac{x}{{2\,L}} = \frac{{\frac{d}{2}}}{L}\,\,{\text{or }}x = d$$
So, required distance $$= d + d + d = 3\,d.$$