Question
A point charge $$50\,\mu C$$ is located in the $$x-y$$ plane at a point whose position vector is $${{\vec r}_0} = \left( {2\hat i + 3\hat j} \right)m.$$ Then electric field at the point whose position vector is $$\vec r = \left( {8\hat i - 5\hat j} \right)m.$$ (in vector form) will be
A.
$$90\left( { - 3\hat i + 4\hat j} \right)V/m$$
B.
$$900\left( {3\hat i - 4\hat j} \right)V/m$$
C.
$$90\left( {3\hat i - 4\hat j} \right)V/m$$
D.
$$900\left( { - 3\hat i + 4\hat j} \right)V/m$$
Answer :
$$900\left( {3\hat i - 4\hat j} \right)V/m$$
Solution :
$$\eqalign{
& \vec E = \frac{{kQ}}{{{r^3}}}\vec r = \frac{{9 \times {{10}^9} \times 50 \times {{10}^{ - 6}}}}{{\left| {\vec r - {{\vec r}_0}} \right|}} \times \left( {\vec r - {{\vec r}_0}} \right) \cr
& {\text{where}}\,\,\vec r - {{\vec r}_0} = \left( {8\hat i - 5\hat j} \right) - \left( {2\hat i + 3\hat j} \right) = 6\hat i - 8\hat j \cr
& \vec E = 900\left( {3\hat i - 4\hat j} \right)V/m \cr} $$