Question

A person measures the depth of a well by measuring the time interval between dropping a stone and receiving the sound of impact with the bottom of the well. The error in his measurement of time is $$\delta T = 0.01$$  seconds and he measures the depth of the well to be $$L= 20$$  meters. Take the acceleration due to gravity $$g = 10\,m{s^{ - 2}}$$   and the velocity of sound is $$300\,m{s^{ - 1}}.$$   Then the fractional error in the measurement, $$\frac{{\delta L}}{L},$$  is closest to-

A. $$0.2\% $$
B. $$1\% $$  
C. $$3\% $$
D. $$5\% $$
Answer :   $$1\% $$
Solution :
$$\eqalign{ & T = \sqrt {\frac{{2L}}{g}} + \frac{L}{v} \cr & {\text{with error limits}} \cr & T + \delta T = \sqrt {\frac{{2\left( {L + \delta L} \right)}}{g}} + \frac{{L + \delta L}}{v} \cr & \therefore T + \delta T = \sqrt {\frac{{2L}}{g}\left( {1 + \frac{{\delta L}}{L}} \right)} + \frac{L}{v}\left( {1 + \frac{{\delta L}}{L}} \right) \cr & \therefore T + \delta T = \sqrt {\frac{{2L}}{g}} \times \left( {1 + \frac{{\delta L}}{{2L}}} \right) + \frac{L}{v}\left( {1 + \frac{{\delta L}}{L}} \right) \cr & \therefore T + \delta T = \sqrt {\frac{{2L}}{g}} + \sqrt {\frac{{2L}}{g}} \frac{{\delta L}}{{2L}} + \frac{L}{v} + \frac{L}{v}\frac{{\delta L}}{L} \cr & T + \delta T = T + \sqrt {\frac{{2L}}{g}} \frac{{\delta L}}{{2L}} + \frac{L}{v}\frac{{\delta L}}{L} \cr & \delta T = \frac{{\delta L}}{L}\left[ {\frac{1}{2}\sqrt {\frac{{2L}}{g}} + \frac{L}{v}} \right] \cr & {\text{Substituting }}\delta T = 0.015,\,L = 20\,m,\, \cr & g = 10\,m{s^{ - 2}},v = 300\,m{s^{ - 1}} \cr & {\text{We get}} \cr & \frac{{\delta L}}{L} = \frac{{15}}{{1600}} \cr & \therefore \frac{{\delta L}}{L} \times 100 = \frac{{15}}{{1600}} \times 100 = \frac{{15}}{{16}}\% \approx 1\% \cr} $$

Releted MCQ Question on
Basic Physics >> Unit and Measurement

Releted Question 1

The dimension of $$\left( {\frac{1}{2}} \right){\varepsilon _0}{E^2}$$  ($${\varepsilon _0}$$ : permittivity of free space, $$E$$ electric field)

A. $$ML{T^{ - 1}}$$
B. $$M{L^2}{T^{ - 2}}$$
C. $$M{L^{ - 1}}{T^{ - 2}}$$
D. $$M{L^2}{T^{ - 1}}$$
Releted Question 2

A quantity $$X$$ is given by $${\varepsilon _0}L\frac{{\Delta V}}{{\Delta t}}$$   where $${ \in _0}$$ is the permittivity of the free space, $$L$$ is a length, $$\Delta V$$ is a potential difference and $$\Delta t$$ is a time interval. The dimensional formula for $$X$$ is the same as that of-

A. resistance
B. charge
C. voltage
D. current
Releted Question 3

A cube has a side of length $$1.2 \times {10^{ - 2}}m$$  . Calculate its volume.

A. $$1.7 \times {10^{ - 6}}{m^3}$$
B. $$1.73 \times {10^{ - 6}}{m^3}$$
C. $$1.70 \times {10^{ - 6}}{m^3}$$
D. $$1.732 \times {10^{ - 6}}{m^3}$$
Releted Question 4

Pressure depends on distance as, $$P = \frac{\alpha }{\beta }exp\left( { - \frac{{\alpha z}}{{k\theta }}} \right),$$     where $$\alpha ,$$ $$\beta $$ are constants, $$z$$ is distance, $$k$$ is Boltzman’s constant and $$\theta $$ is temperature. The dimension of $$\beta $$ are-

A. $${M^0}{L^0}{T^0}$$
B. $${M^{ - 1}}{L^{ - 1}}{T^{ - 1}}$$
C. $${M^0}{L^2}{T^0}$$
D. $${M^{ - 1}}{L^1}{T^2}$$

Practice More Releted MCQ Question on
Unit and Measurement


Practice More MCQ Question on Physics Section