Question
A particle starts sliding down a frictionless inclined plane. If $${S_n}$$ is the distance travelled by it from time $$t = n - 1\,sec$$ to $$t = n\,sec,$$ the ratio $$\frac{{{S_n}}}{{{S_{n + 1}}}}$$ is-
A.
$$\frac{{2n - 1}}{{2n + 1}}$$
B.
$$\frac{{2n + 1}}{{2n}}$$
C.
$$\frac{{2n}}{{2n + 1}}$$
D.
$$\frac{{2n + 1}}{{2n - 1}}$$
Answer :
$$\frac{{2n - 1}}{{2n + 1}}$$
Solution :
$$\eqalign{
& {s_n} = \frac{a}{2}\left( {2n - 1} \right); \cr
& {s_{n\, + \,1}} = \frac{a}{2}\left[ {2\left( {n + 1} \right) - 1} \right] = \frac{a}{2}\left( {2n + 1} \right) \cr
& \frac{{{s_n}}}{{{s_{n\, + \,1}}}} = \frac{{2n - 1}}{{2n + 1}} \cr} $$