Solution :
Activity B to M for particle thrown upwards
$$\eqalign{
& v_1^2 - u_0^2 = 2( - g)\quad \left[ {\frac{{u_0^2{{\sin }^2}\alpha }}{{2g}}} \right] \cr
& \therefore v_1^2 = u_0^2\left( {1 - {{\sin }^2}\alpha } \right) = u_0^2{\cos ^2}\alpha \cr
& \therefore {v_1} = {u_0}\cos \alpha \,......\left( {\text{i}} \right) \cr} $$

Applying conservation of linear momentum in $$Y$$-direction
$$2mv\sin \theta = m{v_1} = m{u_0}\cos \alpha \,......\left( {{\text{ii}}} \right)\,[{\text{from}}\,\left( {\text{i}} \right)]$$
Applying conservation of linear momentum in $$X$$-direction
$$2mv\cos \theta = m{u_0}\cos \alpha \,.....\left( {{\text{iii}}} \right)$$
on dividing (ii) and (iii) we get
$$\tan \theta = 1\,\therefore \theta = \frac{\pi }{4}$$