Question
      
        A particle is moving with a velocity $$\vec v = k\left( {y\hat i + x\hat j} \right)$$    where $$k$$  is a constant. The general equation for its path is:                                                                                                              
       A.
        $$y = {x^2} + {\text{ constant}}$$              
       B.
        $${y^2} = x + {\text{ constant}}$$              
       C.
        $${y^2} = {x^2} + {\text{ constant}}$$                 
              
       D.
        $$xy = {\text{ constant}}$$              
            
                Answer :  
        $${y^2} = {x^2} + {\text{ constant}}$$      
             Solution :
        From given equation, 
$$\eqalign{
  & \vec v = k\left( {y\hat i + x\hat j} \right) = ky\hat i + kx\hat j = {V_x}\hat i + {V_y}\hat j  \cr 
  & \frac{{dx}}{{dt}} = ky\,\,{\text{and}}\,\,\frac{{dy}}{{dt}} = kx  \cr 
  & {\text{Now}},\,\,\frac{{\frac{{dy}}{{dt}}}}{{\frac{{dx}}{{dt}}}} = \frac{x}{y} = \frac{{dy}}{{dx}}\,\,\, \Rightarrow ydy = xdx \cr} $$
Integrating both sides we get  $${y^2} = {x^2} +$$   constant