Question
A monoatomic ideal gas goes through a process $$p = {p_0} - \alpha V$$ where $${p_0}$$ and $$\alpha $$ are positive constants and $$V$$ is its volume. At what volume will the entropy of gas be maximum?
A.
$$\frac{{5{p_0}}}{{6\alpha }}$$
B.
$$\frac{{{p_0}}}{{2\alpha }}$$
C.
$$\frac{{{p_0}}}{{4\alpha }}$$
D.
$$\frac{{5{p_0}}}{{8\alpha }}$$
Answer :
$$\frac{{5{p_0}}}{{8\alpha }}$$
Solution :
$$\eqalign{
& ds = n{C_v}dT + PdV = 0 \cr
& nR\frac{{dT}}{{dV}} + \left( {{p_0} - \alpha V} \right) = 0 \cr
& pV = nRT \cr
& {p_0}V - \alpha {V^2} = nRT \cr
& {p_0} - 2\alpha V = nR\frac{{dT}}{{dV}} \cr
& - \left( {{p_0} - \alpha V} \right)\left( {\gamma - 1} \right) = {p_0} - 2\alpha V \cr
& - {p_0}\left( {\gamma - 1} \right) + \alpha \left( {\gamma - 1} \right)V = {p_0} - 2\alpha V \cr
& {p_0}V = \alpha V\left( {\gamma + 1} \right) \cr
& V = \frac{{{p_0}\gamma }}{{\alpha (\gamma + 1)}} \cr
& V = \frac{{{p_0} \times \frac{5}{3}}}{{\alpha \left( {\frac{5}{3} + 1} \right)}} = \frac{{5{p_0}}}{{8\alpha }} \cr} $$