Question
      
        A glass prism of refractive index $$1.5$$ is immersed in water (refractive index $$\frac{4}{3}$$ ). A light beam incident normally on the face $$AB$$  is totally reflected to reach on the face $$BC$$  if
  
      
       A.
        $$\sin \theta  \geqslant \frac{8}{9}$$                 
              
       B.
        $$\frac{2}{3} < \sin \theta  < \frac{8}{9}$$              
       C.
        $$\sin \theta  \leqslant \frac{2}{3}$$              
       D.
        $$\frac{1}{2} < \sin \theta  < 1$$              
            
                Answer :  
        $$\sin \theta  \geqslant \frac{8}{9}$$      
             Solution :
        The phenomenon of total internal reflection takes place during reflection at $$P.$$
 

$$\sin \theta  = \frac{1}{{_g^w\mu }}\,......\left( {\text{i}} \right)$$
Now,
$$\eqalign{
  & _g^w\mu  = \frac{{_g^a\mu }}{{_w^a\mu }} = \frac{{1.5}}{{\frac{4}{3}}} = 1.125  \cr 
  & \therefore \sin \theta  = \frac{1}{{1.125}} = \frac{8}{9}  \cr 
  & \therefore \sin \theta \,{\text{should}}\,{\text{be}}\,{\text{greater}}\,{\text{than}}\,\frac{8}{9}. \cr} $$