Solution :
$$\eqalign{
& {P^3}{V^5} = {\text{constant}} \cr
& \Rightarrow \,\,P{V^{\frac{5}{3}}} = {\text{constant}} \cr
& \Rightarrow \,\,\gamma = \frac{5}{3} \cr} $$
⇒ monoatomic gas
For adiabatic process

$$\eqalign{
& W = \frac{{{P_f}{V_f} - {P_i}{V_i}}}{{1 - \gamma }} \cr
& = \frac{{\frac{1}{{32}} \times {{10}^5} \times 8 \times {{10}^{ - 3}} - {{10}^5} \times {{10}^{ - 3}}}}{{1 - \frac{5}{3}}} \cr
& \therefore \,\,W = \frac{{25 - 100}}{{\frac{{\left( {3 - 5} \right)}}{3}}} \cr
& = \frac{{75 \times 3}}{2} \cr
& = 112.5\,J \cr} $$
From first law of thermodynamics $$q = \Delta U + w$$
$$\eqalign{
& \therefore \,\,\Delta U = - w \cr
& \therefore \,\,\Delta U = - 112.5\,J \cr} $$
Now applying first law of thermodynamics for process
1 & 2 and adding $${q_1} + {q_2} = \Delta U + {P_i}\left( {{V_f} - {V_i}} \right)$$
$$\eqalign{
& = - 112.5 + {10^5}\left( {8 - 1} \right) \times {10^{ - 3}} \cr
& = 587.55 \cr} $$