Solution :

$$r = \sqrt 2 \frac{a}{2}\,\,\,\,\,\,or,\,{r^2} = \frac{{{a^2}}}{2}$$
Net torque about $$O$$ is zero.
Therefore, angular momentum $$\left( L \right)$$ about $$O$$ will be conserved, or $${L_i} = {L_f}$$
$$\eqalign{
& MV\left( {\frac{a}{2}} \right) = {I_0}\,\omega = \left( {{I_{cm}} + M{r^2}} \right)\omega \cr
& \omega = \left\{ {\frac{{M{a^2}}}{6} + M\left( {\frac{{{a^2}}}{2}} \right)} \right\}\omega = \frac{2}{3}M{a^2}\omega = \frac{{3v}}{{4a}} \cr} $$