Solution :

$$\eqalign{
& {\text{Given,}}\,\,\theta = {45^ \circ },\,r = 0.4\,m,\,g = 10\,m/{s^2} \cr
& T\sin \theta = \frac{{m{v^2}}}{r}\,......\left( {\text{i}} \right) \cr
& T\cos \theta = mg\,......\left( {{\text{ii}}} \right) \cr} $$
From equation (i) & (ii) we have,
$$\eqalign{
& \tan \theta = \frac{{{v^2}}}{{rg}} \cr
& {v^2} = rg\quad \cr
& \because \theta = {45^ \circ } \cr} $$
Hence, speed of the pendulum in its circular path,
$$v = \sqrt {rg} = \sqrt {0.4 \times 10} = 2\,m/s$$