Question
A charge $$q\,\mu C$$ is placed at the centre of a cube of a side $$0.1\,m,$$ then the electric flux diverging from each face of the cube is
A.
$$\frac{{q \times {{10}^{ - 6}}}}{{24{\varepsilon _0}}}$$
B.
$$\frac{{q \times {{10}^{ - 4}}}}{{{\varepsilon _0}}}$$
C.
$$\frac{{q \times {{10}^{ - 6}}}}{{6{\varepsilon _0}}}$$
D.
$$\frac{{q \times {{10}^{ - 4}}}}{{12{\varepsilon _0}}}$$
Answer :
$$\frac{{q \times {{10}^{ - 6}}}}{{6{\varepsilon _0}}}$$
Solution :
The electric flux emerging from the cube is
$$\eqalign{
& \phi = \frac{1}{{{\varepsilon _0}}} \times {\text{charge enclosed}}\,\,\left( {{q_{{\text{inside}}}}} \right) \cr
& = \frac{1}{{{\varepsilon _0}}} \times {q_{{\text{inside}}}} \times {10^{ - 6}} \cr
& = \frac{1}{{{\varepsilon _0}}} \times {q_{{\text{inside}}}} \times {10^{ - 6}}\,\,\,\left[ {{q_{{\text{inside}}}} = q \times {{10}^{ - 6}}} \right] \cr} $$
Since, a cube has six faces, so electric flux through each face is,
$$\phi ' = \frac{\phi }{6} = \frac{1}{{6{\varepsilon _0}}} \times q \times {10^{ - 6}} = \frac{{q \times {{10}^{ - 6}}}}{{6{\varepsilon _0}}}$$