Question
      
        A car, moving with a speed of $$50 \,km/hr,$$  can be stopped by brakes after at least $$6 \,m.$$  If the same car is moving at a speed of $$100 \,km/hr,$$   the minimum stopping distance is-                                                          
       A.
        $$12 \,m$$              
       B.
        $$18 \,m$$              
       C.
        $$24 \,m$$                 
              
       D.
        $$6 \,m$$              
            
                Answer :  
        $$24 \,m$$      
             Solution :
        $$\eqalign{
  & {\bf{Case - 1:}}  \cr 
  & u = 50 \times \frac{5}{{18}}\,m/s,  \cr 
  & v = 0,\,\,\,\,s = 6\,m,\,\,\,\,a = a  \cr 
  & {v^2} - {u^2} = 2as  \cr 
  &  \Rightarrow {0^2} - {\left( {50 \times \frac{5}{{18}}} \right)^2} = 2 \times a \times 6  \cr 
  &  \Rightarrow  - {\left( {50 \times \frac{5}{{18}}} \right)^2} = 2 \times a \times 6.....(i)  \cr 
  & {\bf{Case - 2:}}  \cr 
  & u = 100 \times \frac{5}{{18}}\,m/s,  \cr 
  & v = 0,\,\,\,\,s = s,\,\,\,\,a = a  \cr 
  & \therefore {v^2} - {u^2} = 2as  \cr 
  &  \Rightarrow {0^2} - {\left( {100 \times \frac{5}{{18}}} \right)^2} = 2 \times a \times s  \cr 
  &  \Rightarrow  - {\left( {100 \times \frac{5}{{18}}} \right)^2} = 2 \times a \times s.....(ii)  \cr 
  & {\text{Dividing (i) and (ii) we get}}  \cr 
  & \frac{{100 \times 100}}{{50 \times 50}}{\text{ = }}\frac{{2 \times a \times s}}{{2 \times a \times 6}}  \cr 
  &  \Rightarrow s = 24\,m \cr} $$