Question
      
        A body of mass $$m$$ is placed on the earth’s surface. It is then taken from the earth's surface to a height $$h = 3\,R,$$  then the change in gravitational potential energy is      
       A.
        $$\frac{{mgh}}{R}$$              
       B.
        $$\frac{2}{3}mgR$$              
       C.
        $$\frac{3}{4}mgR$$                 
              
       D.
        $$\frac{{mgR}}{2}$$              
            
                Answer :  
        $$\frac{3}{4}mgR$$      
             Solution :
        Potential energy, $$U =  - \frac{{GMm}}{r}$$
At the earth’s surface, $$r = R$$
$$\therefore {U_e} =  - \frac{{GMm}}{R}$$
Now, if a body is taken to height $$h = 3R,$$  then the potential energy is given by
$$\eqalign{
  & {U_h} =  - \frac{{GMm}}{{R + h}}\,\,\left( {\because r = h + R} \right)  \cr 
  &  =  - \frac{{GMm}}{{4R}} \cr} $$
Thus, change in gravitational potential energy,
$$\eqalign{
  & \Delta U = {U_h} - {U_e}  \cr 
  &  =  - \frac{{GMm}}{{4R}} - \left( { - \frac{{GMm}}{R}} \right)  \cr 
  &  =  - \frac{{GMm}}{{4R}} + \frac{{GMm}}{R} = \frac{3}{4}\frac{{GMm}}{R}  \cr 
  & \therefore \Delta U = \frac{3}{4}\frac{{g{R^2}m}}{R}\,\,\left( {\because GM = g{R^2}} \right)  \cr 
  &  = \frac{3}{4}mgR \cr} $$