Solution :

Magnetic field at the centre due to current in arc $$ABC$$ is
$${B_1} = \frac{{{\mu _0}}}{{4\pi }}\frac{{{I_1}}}{r}\theta \,\,\,\,\,\,\,\,\left( {{\text{Directed}}\,{\text{upwards}}} \right)$$
Magnetic field at the centre due to current in arc $$ADB$$ is
$${B_2} = \frac{{{\mu _0}}}{{4\pi }}\frac{{{I_2}}}{r}\left( {2\pi - \theta } \right)\,\,\,\,\,\,\left( {{\text{Directed}}\,{\text{downwards}}} \right)$$
Therefore net magnetic field at the centre
$$\eqalign{
& B = \frac{{{\mu _0}}}{{4\pi }}\frac{{{I_1}}}{r}\frac{\theta }{\pi } - \frac{{{\mu _0}}}{{4\pi }}\frac{{{I_2}}}{r}\left( {2\pi - \theta } \right) \cr
& {\text{Also}},\,{I_1} = \frac{E}{{{R_1}}} = \frac{E}{{\frac{{\rho {\ell _1}}}{A}}} = \frac{{EA}}{{\rho r\theta }} \cr
& {\text{and}}\,{I_2} = \frac{E}{{{R_2}}} = \frac{E}{{\frac{{\rho {\ell _2}}}{A}}} = \frac{{EA}}{{\rho r\left( {2\pi - \theta } \right)}} \cr
& \therefore B = \frac{{{\mu _0}}}{{4\pi }}\left[ {\frac{{EA}}{{\rho r\theta }} \times \frac{\theta }{r} - \frac{{EA}}{{\rho r\left( {2\pi - \theta } \right)}} \times \frac{{\left( {2\pi - \theta } \right)}}{r}} \right] = 0 \cr} $$