Solution :
For vertical motion of bullet or ball $$u = 0,\,s = 5m,\,t = ?,\,a = 10m/{s^2}$$

$$\eqalign{
& S = ut + \frac{1}{2}a{t^2} \Rightarrow 5 = \frac{1}{2} \times 10 \times {t^2} \cr
& \Rightarrow t = 1\sec \cr} $$
For horizontal motion of ball
$${x_{ball}} = {V_{ball}}t \Rightarrow 20 = {V_{ball}} \times 1 = {V_{ball}}$$
For horizontal motion of bullet
$${x_{bullet}} = {V_{bullet}} \times t \Rightarrow 100 = {V_{bullet}} \times 1 = {V_{bullet}}$$
Applying conservation of linear momentum during collision, we get
$$\eqalign{
& mV = m{V_{bullet}} + M{V_{ball}} \cr
& 0.01V = 0.01 \times 100 + 0.2 \times 20 \cr
& \therefore V = \frac{5}{{0.01}} = 500m/s \cr} $$