Question

$$z_1$$ and $$z_2$$ are the roots of $${3z^2} +3z + b = 0.$$    If $$O\left( 0 \right),A\left( {{z_1}} \right),B\left( {{z_2}} \right)$$    form an equilateral triangle, then the value of $$b$$ is

A. $$- 1$$
B. $$1$$  
C. $$0$$
D. does not exist
Answer :   $$1$$
Solution :
$$\eqalign{ & {z_1} + {z_2} = - 1,{z_1}{z_2} = \frac{b}{3} \cr & {0^2} + {z_1}^2 + {z_2}^2 = 0 \times {z_1} + 0 \times {z_2} + {z_1}{z_2} \cr & \Rightarrow {\left( {{z_1} + {z_2}} \right)^2} - 2{z_1}{z_2} = {z_1}{z_2} \cr & \Rightarrow 1 = 3{z_1}{z_2} = 3\frac{b}{3} \cr & \Rightarrow b = 1. \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section