Question

$$z$$ and $$w$$ are two nonzero complex numbers such that $$\left| z \right| = \left| w \right|\,\,{\text{and Arg}}\,z + {\text{Agr}}\,w = \pi $$       then $$z$$ equals

A. $$\overline \omega $$
B. $$ - \overline \omega $$  
C. $$\omega $$
D. $$ - \omega $$
Answer :   $$ - \overline \omega $$
Solution :
$$\eqalign{ & z = \left| z \right|\left( {\cos \,\theta + i\,\sin \,\theta } \right) \cr & {\text{where }}\theta = {\text{Arg }}z \cr & {\text{if }}{\theta _1} = {\text{Arg }}w{\text{ then }}\theta = \pi - {\theta _1} \cr & \therefore \,z = \left| w \right|\left\{ {\cos \left( {\pi - {\theta _1}} \right) + i\,\sin \left( {\pi - {\theta _1}} \right)} \right\} \cr & \Rightarrow z = \left| w \right|\left( { - \cos \,{\theta _1} + i\,\sin \,{\theta _1}} \right) \cr & \Rightarrow z = - \left| w \right|\left( { - \cos \,{\theta _1} + i\,\sin \,{\theta _1}} \right) \cr & \Rightarrow z = - \left| w \right|\left( {\cos \,{\theta _1} - i\,\sin \,{\theta _1}} \right) \cr & \Rightarrow z = - \left| {\overline w } \right| \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section