Question

$$\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^{100}}}}{{{e^x}}} + {{\left( {\cos \frac{2}{x}} \right)}^{{x^2}}}} \right) = ?$$

A. $${e^{ - 1}}$$
B. $${e^{ - 4}}$$
C. $$\left( {1 + {e^{ - 2}}} \right)$$
D. $${e^{ - 2}}$$  
Answer :   $${e^{ - 2}}$$
Solution :
$$\eqalign{ & {\text{Consider }}\mathop {\lim }\limits_{x \to \infty } \left[ {\frac{{{x^{100}}}}{{{e^x}}} + {{\left( {\cos \frac{2}{x}} \right)}^{{x^2}}}} \right] \cr & = \mathop {\lim }\limits_{x \to \infty } \frac{{{x^{100}}}}{{{e^x}}} + \mathop {\lim }\limits_{x \to \infty } {\left[ {\cos \left( {\frac{2}{x}} \right)} \right]^{{x^2}}} \cr & = \mathop {\lim }\limits_{x \to \infty } \frac{{{x^{100}}}}{{{e^x}}} = 0\,\,\,\left( {{\text{Using L'Hospital's rule}}} \right) \cr & {\text{and }}\mathop {\lim }\limits_{x \to \infty } {\left( {\cos \frac{2}{x}} \right)^{{x^2}}}{\text{ is of }}\left( {{1^\infty }} \right){\text{ form}} \cr & = {e^{\mathop {\lim }\limits_{x \to \infty } \,{x^2}\left( {\cos \frac{2}{x} - 1} \right)}}\,\,\,\left( {{\text{Put }}\frac{2}{x} = t\,\, \Rightarrow x = \frac{2}{t}} \right) \cr & = {e^{\mathop {\lim }\limits_{t \to 0} \,\frac{4}{{{t^2}}}\left( {\cos \,t - 1} \right)}}\, \cr & = {e^{ - \mathop {\lim }\limits_{t \to 0} \left( {\frac{{1 - \cos \,t}}{{{t^2}}}} \right).4}} \cr & = {e^{\mathop { - \lim }\limits_{t \to 0} \left( {\frac{{\sin \,t}}{{2t}}} \right)4}} \cr & = {e^{ - 2}} \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section