Question

Which one of the following differential equations represents the family of straight lines which are at unit distance from the origin?

A. $${\left( {y - x\frac{{dy}}{{dx}}} \right)^2} = 1 - {\left( {\frac{{dy}}{{dx}}} \right)^2}$$
B. $${\left( {y + x\frac{{dy}}{{dx}}} \right)^2} = 1 + {\left( {\frac{{dy}}{{dx}}} \right)^2}$$
C. $${\left( {y - x\frac{{dy}}{{dx}}} \right)^2} = 1 + {\left( {\frac{{dy}}{{dx}}} \right)^2}$$  
D. $${\left( {y + x\frac{{dy}}{{dx}}} \right)^2} = 1 - {\left( {\frac{{dy}}{{dx}}} \right)^2}$$
Answer :   $${\left( {y - x\frac{{dy}}{{dx}}} \right)^2} = 1 + {\left( {\frac{{dy}}{{dx}}} \right)^2}$$
Solution :
$$y = mx + c$$    (Equation of straight line)
$$\frac{{dy}}{{dx}} = m$$   and $$mx - y + c = 0$$    is at unit distance from origin.
$$\eqalign{ & \therefore \,\frac{{\left| {m\left( 0 \right) - \left( 0 \right) + c} \right|}}{{\sqrt {{m^2} + {{\left( { - 1} \right)}^2}} }} = 1\, \Rightarrow c = \sqrt {1 + {m^2}} \cr & {\text{Now}}\,{\text{:}}\,{\left[ {y - x\frac{{dy}}{{dx}}} \right]^2} = {\left[ {mx + c - xm} \right]^2} = {c^2} = 1 + {m^2} \cr & {\text{also,}}\,{\left[ {y + x\frac{{dy}}{{dx}}} \right]^2} = {\left[ {mx + c + xm} \right]^2} = {\left[ {2mx + \sqrt {1 + {m^2}} } \right]^2} \cr & {\text{also,}}\,1 - {\left( {\frac{{dy}}{{dx}}} \right)^2} = 1 - {m^2}{\text{ and }}1 + {\left( {\frac{{dy}}{{dx}}} \right)^2} = 1 + {m^2} \cr & \Rightarrow {\left[ {y - x\frac{{dy}}{{dx}}} \right]^2} = 1 + {\left( {\frac{{dy}}{{dx}}} \right)^2} \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section