Question

Which of the following statement is true ?

A. The point $$A\left( {0,\, - 1} \right),\,B\left( {2,\,1} \right),\,C\left( {0,\,3} \right)$$       and $$D\left( { - 2,\,1} \right)$$   are vertices of a rhombus.
B. The points $$A\left( { - 4,\, - 1} \right),\,B\left( { - 2,\, - 4} \right),\,C\left( {4,\,0} \right)$$       and $$D\left( {2,\,3} \right)$$   are vertices of a square.
C. The points $$A\left( { - 2,\, - 1} \right),\,B\left( {1,\,0} \right),\,C\left( {4,\,3} \right)$$       and $$D\left( {1,\,2} \right)$$   are vertices of a parallelogram.  
D. None of these
Answer :   The points $$A\left( { - 2,\, - 1} \right),\,B\left( {1,\,0} \right),\,C\left( {4,\,3} \right)$$       and $$D\left( {1,\,2} \right)$$   are vertices of a parallelogram.
Solution :
$$\left( {\bf{A}} \right)$$   Here $$A\left( {0,\, - 1} \right),\,B\left( {2,\,1} \right),\,C\left( {0,\,3} \right),\,D\left( { - 2,\,1} \right)$$
For a rhombus all four sides are equal but the diagonal are not equal, we see
$$AC = \sqrt {0 + {4^2}} = 4,\,\,BD = \sqrt {{4^2} - 0} = 4$$
Since diagonals are equals therefore it is a square, not rhombus.
$$\left( {\bf{B}} \right)$$   Here $$AB = \sqrt {{2^2} + {{\left( { - 3} \right)}^2}} = \sqrt {13} ,\,\,BC = \sqrt {{6^2} + {4^2}} = \sqrt {52} $$
Since $$AB \ne BC$$   therefore it is not square.
$$\left( {\bf{C}} \right)$$   In this case mid point of $$AC$$  is $$\left( {\frac{{4 - 2}}{2},\,\frac{{3 - 1}}{2}} \right){\text{ or }}\left( {1,\,1} \right)$$
Also mid-point of diagonal $$BD\left( {\frac{{1 + 1}}{2},\,\frac{{0 + 2}}{2}} \right){\text{ or }}\left( {1,\,1} \right)$$
Hence the points are vertices of a parallelogram.

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section