Question

Which of the following is not the area of the region bounded by $$y = {e^x}$$  and $$x = 0$$  and $$y = e\,?$$

A. $$e - 1$$
B. $$\int\limits_1^e {\ln \left( {e + 1 - y} \right)dy} $$
C. $$e - \int\limits_0^1 {{e^x}dx} $$  
D. $$\int\limits_1^e {\ln \,y\,dy} $$
Answer :   $$e - \int\limits_0^1 {{e^x}dx} $$
Solution :
Required area
$$\eqalign{ & = \int\limits_1^e {\ln \,y\,dy} \cr & = \left( {y\,\ln \,y - y} \right)_1^e \cr & = \left( {e - e} \right) - \left[ { - 1} \right] \cr & = 1 \cr} $$
Application of Integration mcq solution image
Also, $$\int\limits_1^e {\ln \,y\,dy} = \int\limits_1^e {\ln \left( {e + 1 - y} \right)dy} $$
Further, required area $$ = e \times 1 - \int\limits_0^1 {{e^x}dx} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section