Question

Which of the following is correct for \[f\left( x \right) = \left\{ \begin{array}{l} \left( {x - e} \right){2^{ - {2^{\left( {\frac{1}{{\left( {e - x} \right)}}} \right)}}}},\,\,\,x \ne e{\rm{ \,at\, }}x = e\\ \,\,\,\,\,\,\,\,\,\,\,\,\,0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = e\,\,\,\, \end{array} \right.\]

A. $$f\left( x \right)$$  is discontinuous at $$x = e$$
B. $$f\left( x \right)$$  is differentiable at $$x = e$$
C. $$f\left( x \right)$$  is non-differentiable at $$x = e$$  
D. none of these
Answer :   $$f\left( x \right)$$  is non-differentiable at $$x = e$$
Solution :
$$\eqalign{ & f\left( {{e^ + }} \right) = \mathop {\lim }\limits_{h \to 0} \left( {e + h - e} \right){2^{ - {2^{\frac{1}{{e - \left( {e - h} \right)}}}}}} \cr & = \mathop {\lim }\limits_{h \to 0} \left( h \right){2^{ - {2^{ - \frac{1}{h}}}}} \cr & = 0 \times 1 \cr & = 0 \cr & \left( {{\text{As for }}h \to 0,\, - \frac{1}{h} \to - \infty \Rightarrow {2^{ - \frac{1}{h}}} \to 0} \right) \cr & f\left( {{e^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \left( { - h} \right){2^{ - {2^{\frac{1}{h}}}}} \cr & = 0 \times 0 \cr & = 0 \cr & {\text{Hence, }}f\left( x \right){\text{ is continuous at }}x = e \cr & f'\left( {{e^ + }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {e + h} \right) - f\left( e \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{h \times {2^{ - {2^{ - \frac{1}{h}}}}} - 0}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} {2^{ - {2^{\frac{1}{h}}}}} \cr & = 1 \cr & f'\left( {{e^ - }} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {e - h} \right) - f\left( 0 \right)}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\left( { - h} \right) \times {2^{ - {2^{ - \frac{1}{h}}}}} - 0}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} {2^{ - {2^{\frac{1}{h}}}}} \cr & = 0 \cr & {\text{Hence, }}f\left( x \right){\text{ is non - differentiable at }}x = e \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section